Long-Term Climate Change Evaluation for the St. Johns River Water Management District

Water Supply Impact Study

Michael G. Cullum, P.E.

Director, Division of Engineering

St. Johns River Water Management District

Background

- Water Supply Impact Study (WSIS)
 - Evaluate 252 MGD surface withdrawal
 - St. Johns and Ocklawaha Rivers NE Florida
 - Hydrology for 90 watersheds
 - Hydrodynamics for Middle and Lower SJR
 - 7 Environmental work groups
 - Peer review by the National Academy of Sciences - National Research Council

Background

- Water Supply Impact Study (WSIS)
 - Water supply planning horizon 2030
 - 12 Withdrawal Scenarios
 - Water Added Back to River System
 - Landuse changes
 - Upper St. Johns Basin Rediversion Projects
 - Uncertainty Analysis
 - H&H Models and Biological Uncertainties
 - Channel Dredging and Reuse
 - Climate Change (2100 requested by NRC)
 - Sea Level Rise

Climate Change Project Scope

- Consultant (NCAR) National Center for Atmospheric Research
 - High/Med/Low Climate Impact Scenarios
 - Used GCM's data for Scenarios and Probability Density Functions
 - Data analysis Precipitation/temperature
 - Development of time series for Hydrology
- District staff
 - Calculate evaporation from temperature
 - Hydrologic evaluation through models

Global Climate Models (GCMs)

- ❖ No 'best' GCM
- Too coarse to represent NE Florida
 - Grid cell size -10s to 100s of kilometers
- Temporal scale
 - TS usually days, run for 100s of years
- Coherent results
 - Different teams, parameterizations, boundary data

Synopsis of GCC Scenarios

	A2	A1B	B1
Population	High	Low	Low
growth	~15 billion	~7 billion	~7 billion
GDP growth	Medium	Very high	High
Energy use	High	Very high/high	Low
Land use	Medium-	Low-medium	High
changes	high		
(1990 to 2100)			
Favored energy	Regional	Balanced	Efficient Use of
	diversity	sources	materials

Bayesian process requires a minimum of 4 cells. Shown to the right are the cells chosen to represent Florida.

Probability Density Function

A1B Scenario, 2040 Average Annual Temperature

NCAR Data Generating Tasks

Source data

- Precipitation and temperature
 - 1950 through 2008 inclusive
 - 49 precipitation stations
 - 23 temperature stations

Method

 List of K-nearest neighbor (K-NN) dates sampled from source data representing 2020 through 2100

Data Generating Algorithm

- ❖ K-NN = K Nearest Neighbors
- Resampling technique
- Generates a sequence of weather data
- Unbiased selection returns historic stats
- Biased selection includes GCM results
 - Warmer Weather dryer conditions, etc.
- Produces input to Hydrology models

Meteorologic Data Development

- Thirty KNN ensemble time series for A1B GCM scenario
 - Three Bayesian levels informed from GCMs
 - 30 percentile (cooler)
 - 50 percentile (maximum expectation)
 - 70 percentile (warmer)
 - Forty-nine precipitation stations
 - Twenty evaporation stations
 - Minimum daily temperature
 - Maximum daily temperature

Example of 5 years simulated

Precipitation - Sanford

Potential Evaporation - Sanford

Hydrologic Model Application

- 90 HSPF models (Hydrologic Simulation Program–Fortran)
- ❖ Used District's Beowulf Cluster for 32,000+ model runs
- Currently Analyzing Results, Drafting Report
- ❖ Presenting to NRC May 23-25, 2011

MSJ15, Lake Monroe, 1995 Rural

Sea Level Rise

❖ The Environmental Fluid Dynamics Code (EFDC) WSIS model was selected for application in the Lower and Middle SJR largely because of the importance of both tidal and sub-tidal ocean effects within these river reaches.

Sea Level Rise

- Mayport: Long term average (1920-2010) = 2.4mm/yr
- *Recent rate (1995-2010) = 4 mm/yr
- ❖ Rise from Baseline year (1995) to target year (2030) = 14 cm
- SLR Expected to counter water level reductions due to water withdrawals
- Accounting for Salt increases in Model

- 1. Project Goals
- 2. Project Partners
- 3. Methods
- 4. Results to Date
- 5. Lessons Learned
- 6. Relevance to the PWSU-CWIG Community.