SOUTH FLORIDA WATER MANAGEMENT DISTRICT

# SFWMD Saltwater Intrusion Mapping, Modeling, and Water Supply Vulnerability Assessment

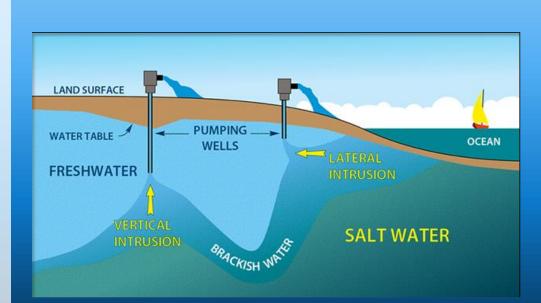
Florida Water and Climate Alliance Drought Webinar

May 30, 2024

Pete Kwiatkowski, PG Section Administrator, Resource Evaluation Water Supply Bureau, Water Resources Division South Florida Water Management District



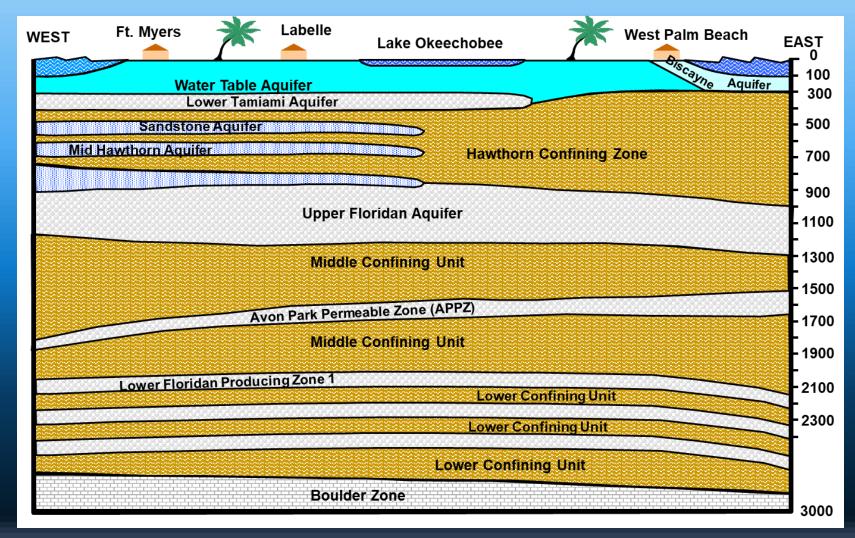



### **Presentation Overview**

- > Overview of Saltwater Intrusion, Aquifers, Wellfields
- Saltwater Intrusion Mapping Program
- Groundwater Modeling
- Water Supply Vulnerability Assessment
- Discussion



### **Common Sources of Saltwater Intrusion**


- Lateral intrusion from the coast
- Vertical Intrusion (upconing from saltwater below)
- Surface Infiltration estuaries, boat basins, saltwater marshes, saltwater canals, etc.
- Ancient (relict) seawater trapped in low permeability aquifers





#### SOUTH FLORIDA WATER MANAGEMENT DISTRICT


### Generalized Hydrogeology of South Florida





# Why is this Important?

- Wellfields are a major water supply source protect investment
- Once saltwater enters wells, very difficult if not impossible -- to reverse
- Very expensive to relocate wellfields and associated infrastructure (pipelines, treatment plants and processes, etc.)
- Other sources of water more expensive to treat (e.g., Floridan aquifer – reverse osmosis)



#### Presenter: Pete Kwiatkowski, P.G.

#### SOUTH FLORIDA WATER MANAGEMENT DISTRICT

### What factors affect the position of the saltwater interface?

#### Surface Water Control Structures

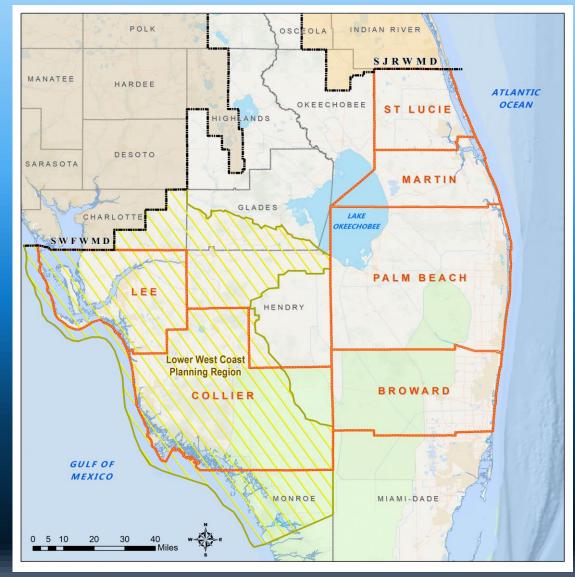
- Maintain canal stages to prevent inland saltwater movement
- Help maintain groundwater levels to minimize inland movement of saltwater into aquifer

### Public Supply Wellfields

- ► Well Locations
- ► Well Depths
- Pumping Rates
- Proximity to Saltwater
- Proximity to Canals (Recharge)

#### Sea-Level Rise and Climate Change Sfwmd.gov

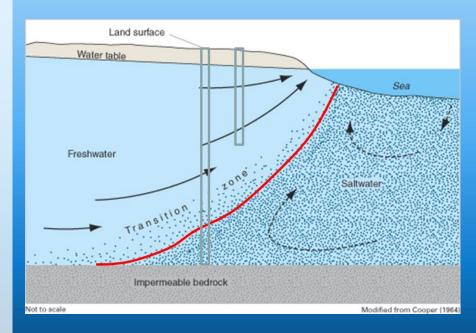



### **SFWMD Saltwater Interface Mapping Project**

- Strategy -- Compare interface positions (i.e., 2009, 2014, 2019), note areas of concern, and adjust monitoring as necessary
- Update Maps Every 5 Years
- Use all available data (USGS, SFWMD, Counties, Water Use Permittees)
- Furthest Inland Extent Dry Season
- Maximum chloride value March/April/May (with some exceptions)
- >250 milligrams per liter (mg/L) chlorides Primary drinking water standard
- Coastal aquifers: Water Table (Biscayne aquifer), Lower Tamiami, Sandstone, Mid-Hawthorn



### **Location of SFWMD Coastal Counties**

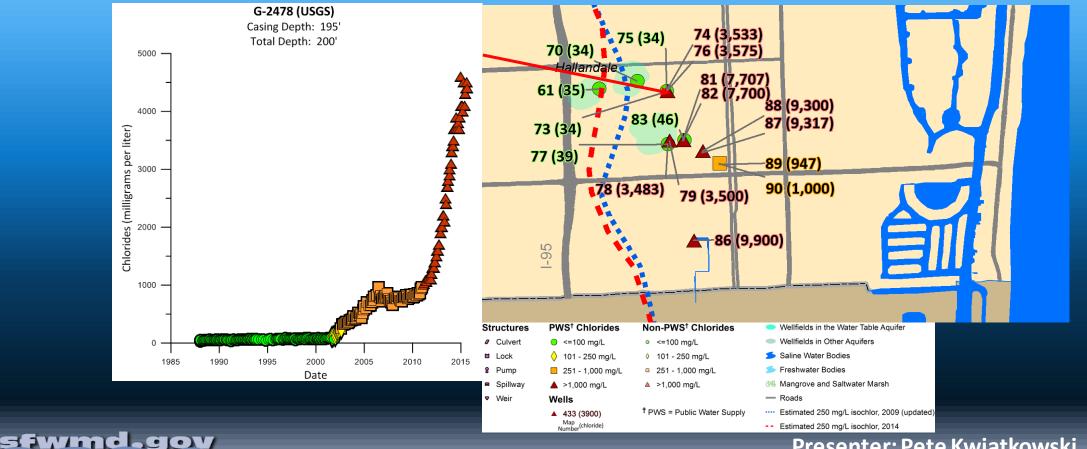

| <u>COUNTY</u>                               | <u>Aquifer</u>           | <u>2009</u> | <u>2014</u> | <u>2019</u> |  |  |
|---------------------------------------------|--------------------------|-------------|-------------|-------------|--|--|
| Martin & St. Lucie                          | SAS                      | Х           | Х           | Х           |  |  |
| Palm Beach                                  | SAS                      | X           | Х           | Х           |  |  |
| Broward                                     | SAS                      | X           | Х           | Х           |  |  |
| Lee                                         | WTA                      | X           | Х           | Х           |  |  |
| Lee                                         | MHA                      | X           | Х           | -           |  |  |
| Lee & Collier                               | SSA                      | X           | Х           | Х           |  |  |
| Lee & Collier                               | LTA                      | X           | Х           | Х           |  |  |
| Collier                                     | WTA                      | X           | Х           | Х           |  |  |
| Collier                                     | MHA                      | X           | Х           | -           |  |  |
| Lee & Collier                               | MHA                      |             |             | X           |  |  |
| <u>Notes:</u>                               |                          |             |             |             |  |  |
| Miami-Dade County mapping performed by USGS |                          |             |             |             |  |  |
| SAS                                         | Surficial Aquifer System |             |             |             |  |  |
| WTA                                         | Water Ta                 |             |             |             |  |  |
| МНА                                         | Mid-Hav                  |             |             |             |  |  |
| SSA                                         | Sandsto                  |             |             |             |  |  |
| LTA                                         | Lower Tamiami Aquifer    |             |             |             |  |  |



# **Mapping Challenges**

- Representing a 3-D feature on a 2-D map
- Representing a dynamic interface with fixed-time snapshots
- > Representing a diffuse front with a single line
- Mapping from data that may represent one of several saltwater intrusion pathways
- Some wells used in 2009 and 2014 were not available in 2019 (abandoned, destroyed, no longer monitored, etc.)
- New wells added to 2019 may alter interpretation of isochlor line.
- Use existing monitor wells with varying well depths, construction, and spacing

sfwmd.gov



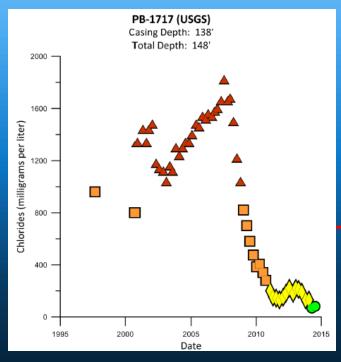


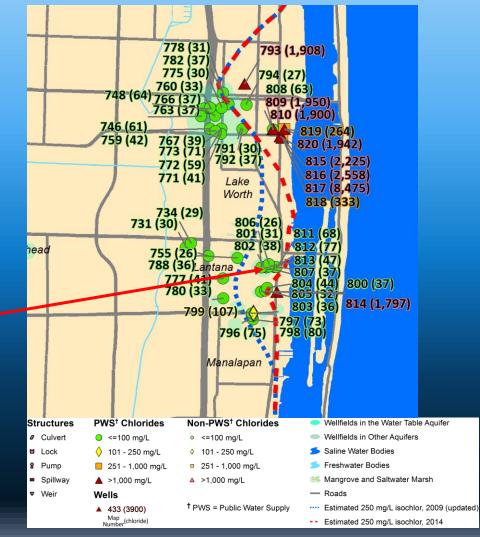

### Hallandale Beach Area, 2009 vs. 2014

• G-2478 (Map # 76, Cl = 3,575 mg/L) -- Saltwater toe (195 to 200 feet depth) continued to advance inland

• G-2477 (Map # 75, Cl = 34 mg/L) -- Freshwater (75 to 80 feet depth) -- Upconing potential

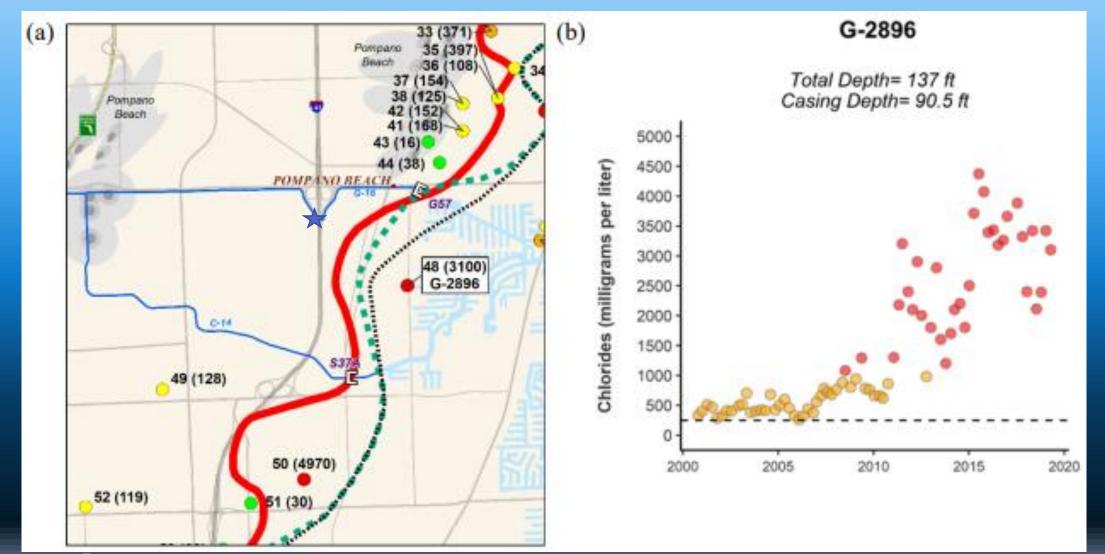



SOUTH FLORIDA WATER MANAGEMENT DISTRICT


### Lantana/Lake Worth Beach Area 2009 vs. 2014

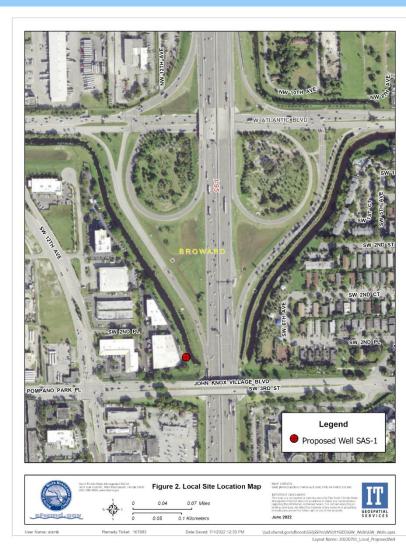
Saltwater interface <u>retreated</u> towards the coast

**Reduced withdrawals from coastal wells** 


sfwmd.gov



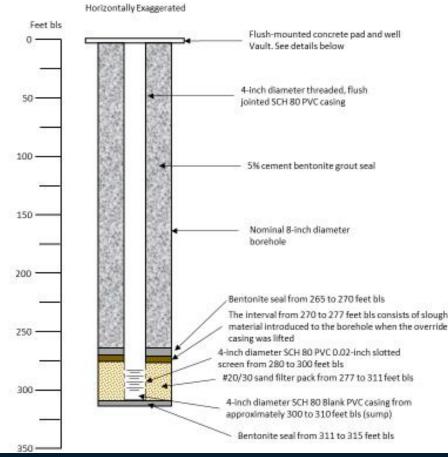





### **Saltwater Intrusion, Pompano Beach Area**



sfwmd.gov


### New SFWMD Saltwater Intrusion Monitor Well BS-3, Pompano Beach





**BS-3 Wellhead** 

Pompano Well BS-3 As-Built Diagram



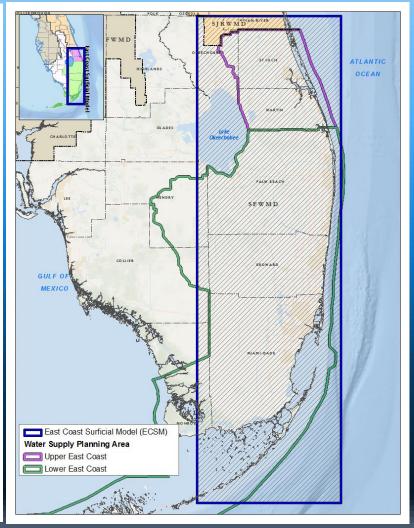
#### **BS-3 Well Construction Diagram**



### What Can We Do?

- Water conservation
- Reduce pumpage in coastal wellfields
- Prioritize withdrawals from western wellfields, provided they do not cause adverse effects on natural systems
- Increase groundwater recharge (canals, reclaimed water, etc.) to maintain and improve freshwater heads to counteract saltwater
- Use alternative water supplies (e.g., Floridan aquifer, reuse for irrigation, surface water storage, etc.) to reduce reliance on coastal wellfields
- Maintain, enhance and conduct monitoring of the saltwater intrusion monitoring network
- Conduct density-dependent groundwater modeling to simulate future saltwater intrusion as a result of future pumping, sea-level rise, and climate change
   SFWIDLGOV

  Presenter: Pete Kwiatkowski, P.G.

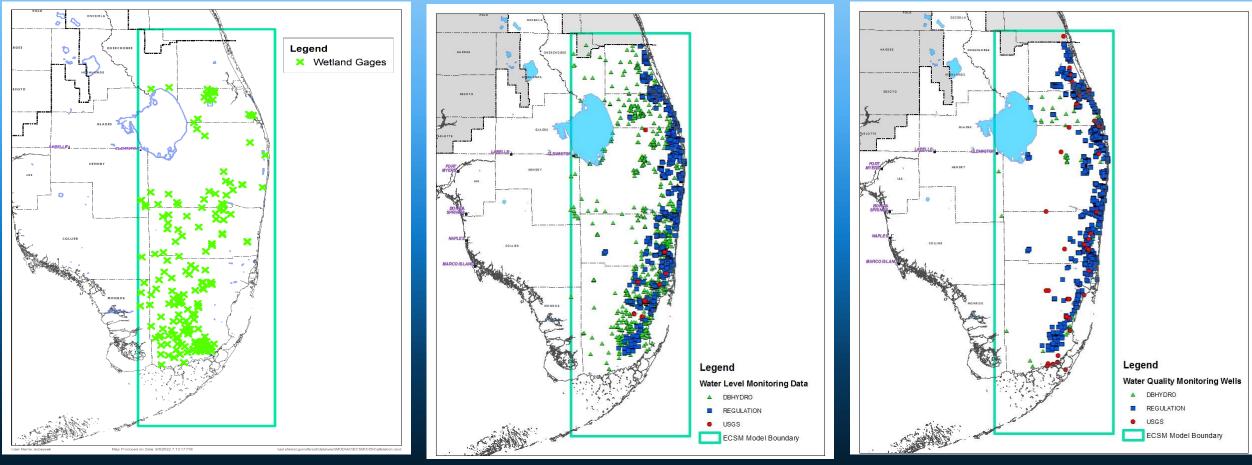

14

# East Coast Surficial Model (ECSM)

- SEAWAT model with code changes to accommodate SFWMD specialized packages
- Calibration Period of Record: 1985 2012
- Verification period of record: 2013 2016
- Daily stress period
- >Cell size: 1,000 ft x 1,000 ft
- ≻5 model layers

sfwmd.gov

- Calibrated to water levels and water quality (TDS) mg/L
- ➢ Boundaries



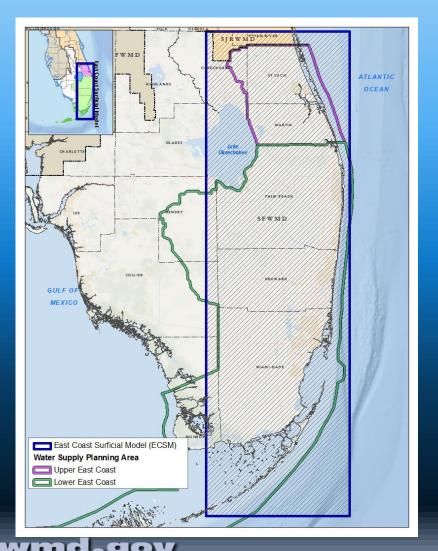

### **ECSM Layers**

| Age                 | Model Layer | Q Layer | Stratigraphy                                       |                                                  | yer Stratigraphy Lithology                                                                                                   |                                                   | Hydrostratigraphy            |          |
|---------------------|-------------|---------|----------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------|----------|
| Holocene            |             |         | Lake Flirt Marl, Undifferentiated<br>Soil and Sand |                                                  | Marl, peat, organic soil, and quartz sand                                                                                    |                                                   | Water Table Aquifer          |          |
|                     | Layer 1     |         |                                                    | Pamlico Sand                                     | Quartz sand                                                                                                                  |                                                   |                              |          |
|                     |             | Q4, Q5  | Miami Limestone                                    |                                                  | Oolitic limestone and fossiliferous limestone                                                                                |                                                   |                              |          |
|                     |             | ~ / ~-  | . Fort                                             | Thompson Formation                               | Marine limestone, gastropod-rich freshwater<br>limestone, sandy limestone, and fossiliferous<br>quartz sandstone             | E                                                 | Š.                           |          |
| Pleistocene Layer 2 |             | Q2, Q3  | Key Largo Limestone                                |                                                  | Coralline limestone and minor amounts of sandy limestone                                                                     | fer System                                        | Aquifer                      |          |
|                     | Layer 3 Q1  | Ar      | nastasia Formation                                 | Coquina, shell, quartz sand, and sandy limestone | ial Aquifer :                                                                                                                | Semiconfining<br>Unit                             |                              |          |
|                     |             |         | Caloosahatchee Formation                           |                                                  | osahatchee Formation                                                                                                         | Sandy to shelly marl, clay, silt, and quartz sand | Surficial                    | <u> </u> |
|                     | Layer 4     |         | Formation                                          | Pinecrest Sand Member                            | Quartz sand, bivalve-rich quartz sandstone and<br>sandy limestone, shell, mudstone, and minor<br>amounts of phosphate grains |                                                   | <u>}</u>                     |          |
| Pliocene            | Layer 5     |         | Tamiami Forr                                       | Ochopee Limestone<br>Member                      | Bivalve-rich limestone, bivalve-rich quartz sand and sandstone, and moldic quartz sandstone                                  |                                                   | Grey<br>Limestone<br>Aquifer |          |



### **Monitoring Locations for Model Calibration**




Wetland Gages (Water Levels)

Groundwater Wells and Surface Water Stations (Water Levels) Groundwater Monitoring Wells (Water Quality) Presenter: Pete Kwiatkowski, P.G. 1

17

#### SOUTH FLORIDA WATER MANAGEMENT DISTRICT

### Objectives of Groundwater Modeling East Coast Surficial Model (ECSM)



- Evaluate if the water supply demands within the East Coast water supply planning regions can be met within a 20-year planning horizon without undue effects on existing legal users of water and natural systems
- Simulate and evaluate the effects of sea-level rise and climate change on the aquifer system as part of SFWMD's Water Supply Vulnerability Assessment

### **Lower East Coast Water Supply Plan**

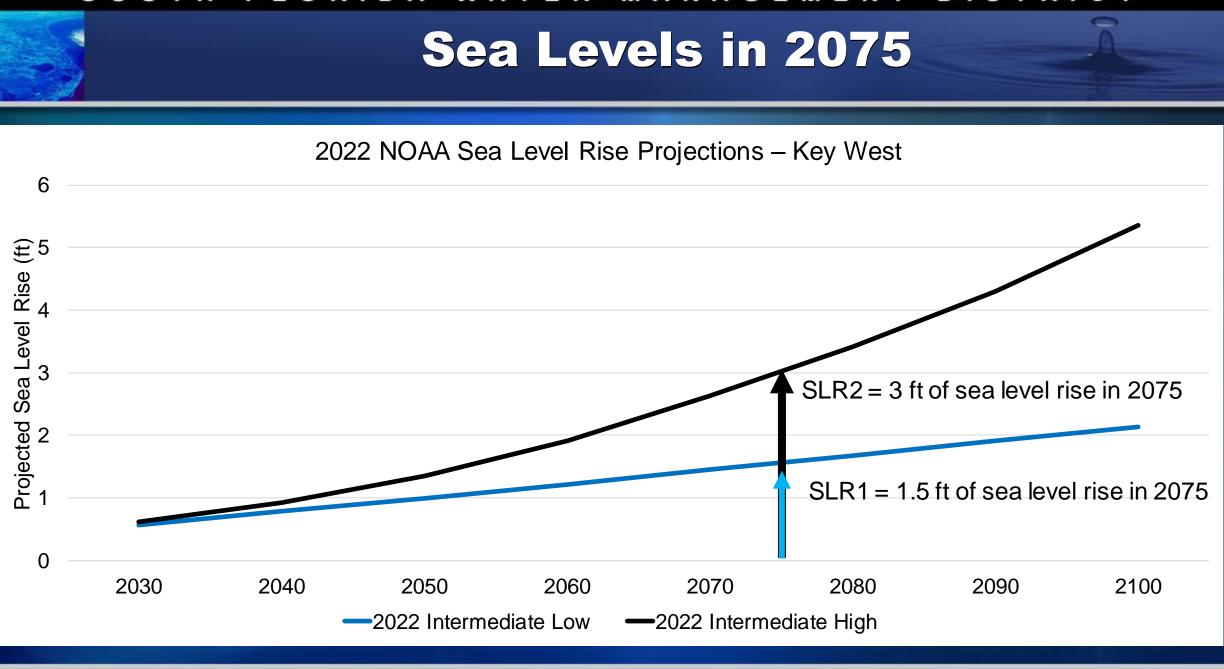
|                               |              |       | Scenario                      | Growt               | h Variable                                   | Climate Variable                                    |
|-------------------------------|--------------|-------|-------------------------------|---------------------|----------------------------------------------|-----------------------------------------------------|
| nand (million<br>er day)<br>L | 1200 -       |       | -                             |                     |                                              |                                                     |
|                               | 1000 -       |       | Base Condition                | Current             | Population                                   | Current Climate                                     |
|                               |              |       | Future Condition              | BEBR*               | Med 2045                                     | Current Climate                                     |
|                               | 800          |       | Future Condition + SL         | R BEBR <sup>*</sup> | Med 2045                                     | SLR1                                                |
|                               | - 600 -      |       |                               |                     |                                              | versity of Florida's Bureau<br>nd Business Research |
| Jse<br>alloi                  | allor 400    |       |                               |                     | -                                            |                                                     |
| Water L                       | 200 -<br>0 - |       |                               |                     | PS – Public S<br>DSS – Domes<br>AGR – Agricu | stic Self-Supply                                    |
|                               | U            | PS DS | SS AGR CII L<br>■ 2021 ■ 2045 | RA PG               | CII – Commei                                 | rcial/Industrial/Institutiona<br>ape/Recreational   |

sfwmd.gov

#### Presenter: Pete Kwiatkowski

### Water Supply Vulnerability Assessment Scenarios

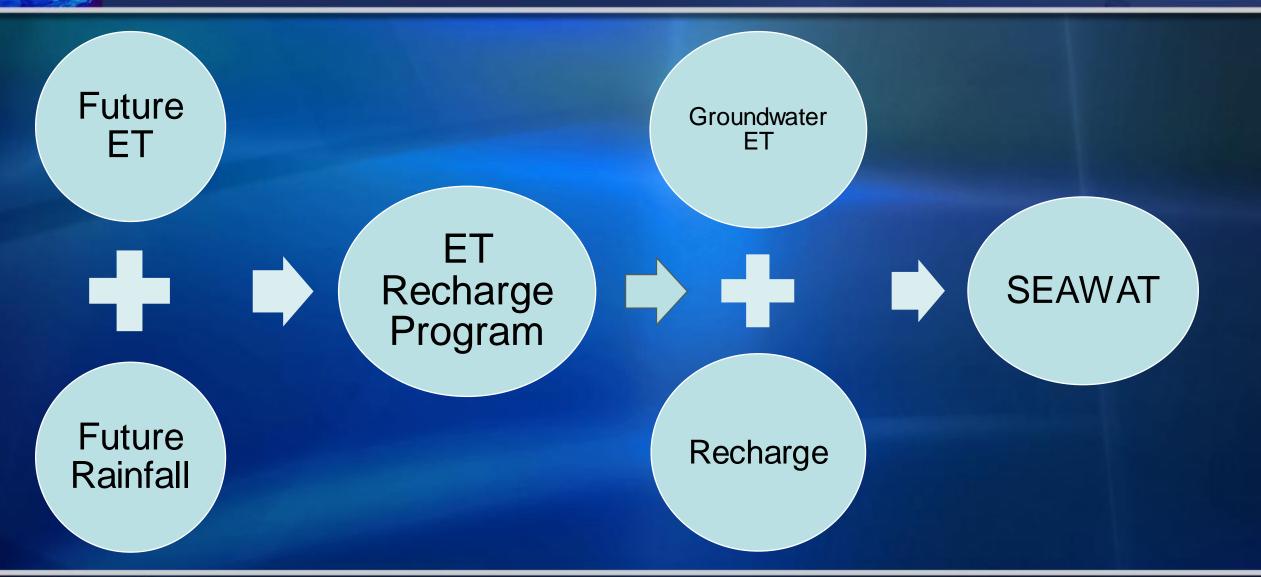
| Scenario Runs | <b>Growth Variable</b>    | Climate Variable      |
|---------------|---------------------------|-----------------------|
|               | <b>Current Population</b> | Current Climate       |
|               | BEBR Med 2075             | Current Climate       |
|               | BEBR Med 2075             | SLR1                  |
|               | BEBR Med 2075             | Warmer and Drier      |
|               | BEBR Med 2075             | Warmer, Drier, & SLR1 |
|               | BEBR Med 2075             | Hot, Driest, & SLR2   |


BEBR – University of Florida's Bureau of Economic and Business Research



## **50-year Water Supply Demand Projections**

| Public Supply                       | <ul> <li>Population = BEBR Med 2075</li> <li>Demand = Per Capita Use Rate for 50 years</li> </ul>                                                                  |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Domestic Self-Supply                | <ul> <li>Population = BEBR Med 2075</li> <li>Demand = Per Capita Use Rate for 50 years</li> </ul>                                                                  |
| Agricultural                        | <ul> <li>Projected agricultural acreages will remain consistent with the 2045<br/>projections. AFSIRS will be utilized to determine irrigation demands.</li> </ul> |
| Landscape/Recreational              | <ul> <li>Water use demands will increase proportional to population</li> </ul>                                                                                     |
| Commercial/Industrial/Institutional | Scenario runs will utilize 2045 Water Supply Plan demands                                                                                                          |
| Power Generation                    | Scenario runs will utilize 2045 Water Supply Plan demands                                                                                                          |
|                                     | AFSIRS – Agricultural Field-Scale Irrigation Requirement Simulation                                                                                                |
| sfwmd.gov                           | Presenter: Pete Kwiatkowski                                                                                                                                        |






Presenter: Pete Kwiatkowski

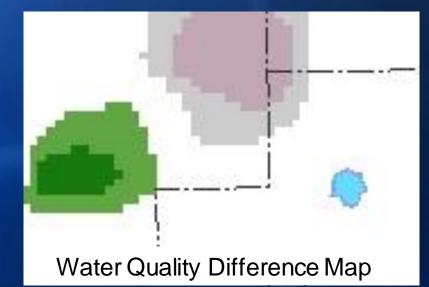
sfwmd.gov

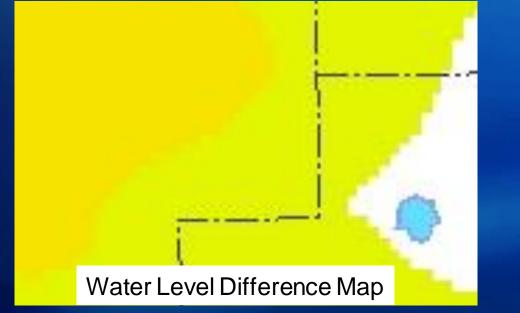
### **Climate Conditions**





### **Sample Model Analysis**


Differences between model scenarios are compared to each other to look for impacts


Future water levels – Current water levels = Water Level Difference Map



Flow vectors from different scenarios are compared to each other

Future water quality – Current water quality = Water Quality Difference Map





sfwmd.gov

#### Presenter: Pete Kwiatkowski

### Schedule

- 2024 Complete ECSM Calibration and Peer Review
- Fall 2024 Publish 2024 Saltwater Interface Maps, SFWMD Coastal Aquifers
- 2025 -- Conduct Model Application and Water Supply Vulnerability Assessment





# Discussion

