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Goals and Objectives: 

Primary goal of the project was to improve water allocation and storage decisions by two 

member utilities of the Florida Water and Climate Alliance (FloridaWCA), TBW and PRA, using 

high-resolution dry season forecasts initialized using remotely sensed soil moisture. The main 

objectives were to i) develop real-time monitoring tool using NASA-based products to assess the 

changes in seasonal cycle of the surface climate of Florida, also adapted for developing seasonal 

outlooks of the oncoming wet and dry seasons ii) develop high-resolution seasonal dynamical 

forecasts for Florida during the winter dry season using NASA Earth Science data for 

initialization and verification; and iii) integrate these forecasts and monitoring tools into end-user 

decision support tools developed and refined via sustained scientist-stakeholder interactions with 

members of the FloridaWCA, enhancing potential for broader adoption.  

 

The FloridaWCA is a stakeholder-scientist partnership that was initiated in 2010 on the basis of a 

shared interest in community building to create actionable science and this project leveraged this 

stakeholder-scientist network to examine the efficacy of its members’ decision-making processes 

with respect to adoption of the project’s forecasting and decision support products. Thus, the 

project aligned well with the NASA Earth Science Division Applied Science Program’s interest 

in developing and demonstrating the integration of Earth observations and related products into 

water resources management and decision-making. 

 

 

Objective 1: Real-time monitoring tool using NASA products 

 

Onset and Demise of rainy season in Peninsular Florida (PF): 

Florida has a distinct wet season, which serves the annual water needs of the State and beyond. 

Major factors contributing to the variability of the wet season over Florida are seasonal rainfall 

anomalies and the variations of the length of the season. Furthermore, the variations of the onset 

date of the rainy season relate significantly to the seasonal anomalies of length of the season and 

rainfall. Monitoring the onset of the rainy season could serve in providing an outlook for the 

season since the onset date variations of the rainy season has a bearing on the forthcoming 

evolution of the season. For example, an early or a delayed onset of the rainy season is likely to 

lead to a wetter or a drier season, respectively.  

 

For the project, NASA’Integrated Multi-Satellite Retrievals for Global Precipitation Mission 

version 6 (IMERG) rainfall dataset was used to monitor the rainy season over the five Water 

Management Districts (see Figure 1) (WMDs) of Florida. This effort was complimented by 

analyzing and verifying the variations of the rainy season over the preceding 20 wet seasons from 

the IMERG datasets. IMERG produces rainfall datasets at various latencies, with the final 

product having a 3.5-month latency since the satellite measurements of radiance are made.  
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Figure 1: (a) Water Management Districts (SFWMD, South Florida; SWFWMD, Southwest Florida; 

SJRWMD, St. Johns River; SRWMD, Suwannee River; NWFWMD, Northwest Florida) for which the onset 

and demise of the wet season is diagnosed. (b) Peace River Basin and (c) Tampa Bay Water Basin 

 

The onset of rainy season over Peninsular Florida (PF) is dramatic with average daily rain rates 

of over 7 mm/day, with significant spatial heterogeneity. The demise of the rainy season shows a 

significant drop to less than 5 mm/day. Figure 2 shows the robust seasonal cycle with peak rainy 

months in June, July, and August in the five WMDs.  

  

 
Figure 2: The box and whisker plot of the monthly mean precipitation (mm/day) over (A) NWFWMD, (B) 

SWFWMD, (C) SRWMD, (D) SJRWMD, and (E) SFWMD. The corresponding annual mean climatology is 

indicated in the top right corner. 

 

Figure 3 shows the time series of the onset date, demise date, seasonal length, and seasonal 

accumulation of rainfall for the SFWMD from three rainfall datasets, and Table 1 presents the 

root mean squared error (RMSE) and correlation values from the Figure 3. The 3.5-month 

latency and 12-h latency dataset have comparable correlation values and are statistically 

significant at 95% confidence interval, suggesting that the 12-h latency dataset may be 

appropriate to diagnose the variations of the rainy season over SFWMD. In other WMDs, the 12-

h latency dataset shows the highest fidelity as well.  

 

We found that an intermediate 12-h latency product of rainfall analysis from IMERG is 

reasonable to use for near real-time monitoring of the wet season over Florida. The operational 

monitoring of the 2021 wet season using the 12-h latency dataset from IMERG was also 

supplemented with the extended weather 6- to 10-day and 8- to 14-day forecasts of precipitation 

probability issued by the NOAA’s Climate Prediction Center.  
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Figure 3: Time series of (A) onset date, (B) demise date, (C) seasonal length (number of days), and (D) 

seasonal accumulation of rainfall of the wet season for South Florida Water Management District (SFWMD). 

Blue dots are for CPC, black dots are for 3.5-month latency IMERG (3.5m IMERG), and red dots are for the 

12-h latency IMERG (12 h IMERG) rainfall datasets, respectively. 

 

 
 

Table 2 shows that the onset and demise dates of the rainy season in each WMD is significantly 

correlated to season length and rain anomalies. This suggests that early or later onset of the rainy 

season is more likely to be associated with longer or shorter and wetter or drier season, 

respectively. The demise date variations can be used to analyze the season posteriorly. For 

example, later or early demise of the season is likely to be associated with shorter or longer and 

drier or wetter season, respectively. 

 

Our study suggests that the current methodology of monitoring the onset date variations of the 

rainy season provides a viable alternative to assess and anticipate the seasonal variations amidst 
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the moderate to insignificant weather and climate prediction skill of the numerical forecast 

models of the wet season of Florida. Figure 4 shows the monitoring discussion and graphic 

generated from the monitoring tool for SFWMD for the 2021 season. This discussion was issued 

on May 28, which was the 7th update since the first one was issued on May 1. This type of 

 
 

discussion was updated at intervals of approximately 4 days to closely monitor the date of the 

onset of the 2021 wet season. The interval of these discussions was changed to monthly once the 

onset was reached in all WMDs. 

 

Figure 5 shows the final discussion generated on September 29, 2021. In these figures, the daily 

cumulative anomaly curve of rainfall shows that a peak was reached before it started to decline. 

The peak is diagnosed as the demise of the wet season. In all WMDs except for SRWMD and 

SFWMD, the demise date in 2021 was reached within a couple of days of the corresponding 

climatological demise date. In SRWMD and SFWMD, the demise date was 4 days after and 5 days 

earlier than climatology, respectively. 

 

We note that the IMERG rainfall dataset with a spatial resolution that is nearly five times higher 

than the CPC rainfall dataset provides additional impetus to pursue such real-time monitoring of 

the wet season over relatively small areas like theWMDs in Florida. 

 

 
Figure 4: An illustration of the monitoring discussion for SFWMD issued on May 28, 2021. Similar 

monitoring discussion was issued for the remaining four WMDs of Florida. (a) The daily rainfall from 
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IMERG-12 h latency dataset for 2021 is in brown. The daily cumulative rainfall anomaly curve is in blue, red 

and green for early, late and neutral onset seasons based on IMERG-12 h latency dataset over the time period 

of 2000–2020, respectively. The anomalous onset seasons are based on terciles. The corresponding dots and 

diamonds in the curve mark the onset and the demise of the rainy season, respectively. The daily cumulative 

anomaly curve for the current rainy season in 2021 is in bold red. (a–f) The quantitative short-term 

precipitation forecast from NOAA’s Weather Prediction Center 

(https://www.wpc.ncep.noaa.gov/qpf/qpf2.shtml ). (g) Mask of South Florida Water Management District 

(SFWMD). Discussion: (1) The range of onset dates from the historical 20 years shows that the earliest was on 

11 May 2018 and the latest was on 11 June 2011. (2) The onset has not reached for this region as of 27 May 

2021. (3) The onset of the rainy season is delayed relative to the climatology onset date (23 May). (4) Given the 

precipitation forecasts for the next few days, it is anticipated that the onset of the rainy season could occur in 

the next few days. 

 

Gap-free 16 year meteorological data record across Florida: 

The rather unique sub-tropical, flat, peninsular region of Florida produces a unique climate with 

extreme weather events across the year that impacts agriculture, public health, and management 

of natural resources. Meteorological data at high temporal resolutions are essential for estimating 

climate variations and issuing the predictions in such regions that exhibit strong sub-daily 

variations like the diurnal and semi-diurnal cycles. However, many meteorological datasets 

contain gaps that limit diurnal trend analysis. We developed a gap-free dataset with 15-minute 

observations for the sub-tropical region of Florida for 2005-2020.  

 

Yearly observations at 15-minute intervals were obtained from Florida Automated Weather 

Network (FAWN) for all active stations. This study used data available over the longest period 

of time across the highest number of stations, resulting in 30 stations over 2005-2020, as shown 

in Figure 6. In the northern part of the State, 16 stations were located in forested and woody 

environments, and in the South, nine stations were in areas classified as savanna. Four of the 

stations were positioned in urban areas, and one station was located in cropland. 

 

Using air temperature at 60 cm, 2m, and 10 m; dew temperature, soil temperature, relative 

humidity, precipitation, wind speed and direction, and solar radiation from FAWN,  methods of 

linear interpolation, trend continuation, reference to external sources, and nearest station 

substitution were applied to fill in the data gaps depending on the extent of the gap. The outcome 

of this study provides continuous surface meteorological observations for 30 FAWN stations at 

15-minute intervals for the years 2005-2020. The gap-free data record is available at 

https://fawn.ifas.ufl.edu/data/ . It establishes a foundation for understanding climate variability 

and developing prediction models, as it can be used to improve the representation of the diurnal 

cycle of numerical weather prediction (NWP) models. The NWP models use current 

observations to predict future weather conditions. 
 

https://www.wpc.ncep.noaa.gov/qpf/qpf2.shtml
https://fawn.ifas.ufl.edu/data/
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Figure 5: Graphics for the culminating discussion on the monitoring of the rainy season over Florida issued 

on September 29, 2021. The daily cumulative precipitation anomaly curve for the five WMDs ending on (A–

E) September 29 and the cumulative daily rainfall from day of onset for early (blue), late (red), and normal 

(green) onset date seasons released with the monitoring discussion of (F–J) September 29. 
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Figure 6: Thirty FAWN stations selected for the project to produce 16-year gap-free meteorological dataset. 
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Objective 2: High-resolution dynamical forecasts for Florida during winter dry seasons 

 

Seasonal climate forecasts were downscaled for boreal winter at 10 km to allow for decision 

making in the following spring season, that is based upon the prior water demand in the winter. 

These winter seasonal reforecasts were dynamically downscaled by the regional spectral model 

(RSM) from a global model run at T62 spectral resolution (210-km grid spacing at the equator) 

forced with sea surface temperatures (SST) obtained from one of the global models in the North 

American Multimodel Ensemble (NMME). We found that RSM runs at 5 km grid did not yield 

significant benefit, while it consumed 6 times more computing resources. Ensemble of seasonal 

forecasts based upon uncertainties in sampling and boundary conditions, were made for each 

winter season from 2000-2022, called seasonal recasts for Florida (CLIFF). These hindcasts were 

used to assess the fidelity of the forecast system. CLIFF was designed in consultation with water 

managers at TBW and PRA, targeting the five water management districts, including two smaller 

watersheds of two specific stakeholders in central Florida that manage the public water supply.  

 

We found that both deterministic and probabilistic skill measures of the seasonal precipitation at 

the zero-month lead for November–December–January (NDJ) and one-month lead for December–

January–February (DJF) show that CLIFF has higher seasonal prediction skill than persistence. 

The results of the seasonal prediction skill of land surface temperature are more sobering than 

precipitation, although, in many instances, it is still better than the persistence skill.  

 

 
Figure 7: Climatological seasonal mean precipitation (mm/day) for (a, b) November-December-January (NDJ) 

and (d, e) December-January-February (DJF) from (a, d) TRMM and (b, e) ensemble mean RSM reforecast. 

Note that NDJ is at 0-month forecast lead in (b) and DJF is at 1-month forecast lead in (e). The corresponding 

climatological errors (RSM reforecast-TRMM; in mm/day) are shown for (c) NDJ and (f) DJF seasons.  
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Figure 8: Climatological seasonal mean surface temperature (°C) for (a, b) November-December-January 

(NDJ) and (d, e) December-January-February (DJF) from (a, d) CPC and (b, e) ensemble mean RSM 

reforecast. Note that NDJ is at 0-month forecast lead in (b) and DJF is at 1-month forecast lead in (e). The 

corresponding climatological errors (RSM reforecast-CPC; in degrees C) are shown for (c) NDJ and (f) DJF 

seasons. 

 

Figures 7 and 8 show the climatological seasonal mean precipitation and surface temperature, 

respectively from CLIFF. 

 

Figure 9 shows the forecast skill in terms of anomaly correlation of winter seasonal precipitation 

between CLIFF and the corresponding observations. The 32 daily and monthly variables are 

archived at https://data.coaps.fsu.edu/pub/abhardwaj/PR/G_RSM/   

 

 
Figure 9: Anomaly correlation of seasonal mean rainfall by region (regions shown top left) 
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Figure 10: The cumulative rainfall (in mm) over a) South Florida, b) Southwest Florida, c) Suwannee River, 

d) St. Johns River, and e) Northwest Florida Water Management Districts from 1 November, 2020 to 1 

March, 2021 of the following year for the ensemble mean (thin red line) and the individual ensemble 

members (shaded) of CLIFF. The solid black line is the corresponding model climatological cumulative 

rainfall for the season, and the dashed black line is the observed climatology.  

 

CLIFF forecasts were presented by cumulative precipitation and by freshwater flux. It was 

evaluated for all 5 water management districts in Florida (see Figure 1) as well as for the TBW 

and PWA service areas (see Figure 10) and found to have systematic wet bias (see Figure 11). 

 

 
Figure 11: Systematic wet bias found in CLIFF.  Top row IMERG rainfall.  Middle row ensemble mean (EM) 

of CLIFF. Bottom row difference (CLIFF-IMERGE).   
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Objective 3: Integration of forecasts into operational decision making and capacity 

building 

The output from monitoring tools and the CLIFF were integrated into the seasonal rainfall-runoff 

model for TBW for use in their source allocation model that specifies supply source mix to meet 

seasonal demands and in the adaptive seasonal risk management tool. 

 For. 

The framework consists of a statistical streamflow generation model, four different sets of 

rainfall inputs, and distinct metrics for evaluating the resulting streamflow forecasts. The four 

sets of rainfall inputs include rainfall climatology, observed rainfall, NOAA-based seasonal 

rainfall forecasts, and CLIFF-based rainfall forecasts. Because NOAA ensemble precipitation 

forecasts were not available in this study, NOAA-based categorical precipitation outlooks were 

postprocessed via a hidden Markov chain model to obtain the corresponding NOAA-based 

seasonal rainfall forecasts. Streamflow forecasts based on rainfall climatology served as a 

reference. Different evaluation metrics, including Spearman correlation, mean absolute percent 

error (MAPE), and rank probability skill score (RPSS), were employed to evaluate model 

performance. The framework was demonstrated for streamflow forecasts for two rivers in the 

southwest of Florida, serving as a major source of a regional water supply agency. Figure 12 

shows the TBW water demands for the month of November. A retrospective streamflow 

forecasting model was designed for the dry season [November, December, January, and 

February (NDJF) months] for each of the 20 years from 2000 to 2019. Results revealed that 

CLIFF-based streamflow forecasts (shown in Figure 13) are a promising alternative to NOAA-

based forecasts. Deterministic streamflow forecasts based on CLIFF rainfall have a smaller mean 

absolute percent error (MAPE) compared with the NOAA-based streamflow forecasts. Although 

NOAA-based probabilistic streamflow forecasts outperformed CLIFF-based probabilistic 

streamflow forecasts for the winter forecasting periods of November, December, and January, 

the latter forecasts performed better for the forecasting period of February. Thus, the two 

probabilistic forecasts are complementary. Although the results are limited to the study area, it 

has general application for evaluating the utility of different rainfall forecasts in providing 

deterministic/probabilistic streamflow forecasts.  

 

 
Figure 12: Forecasts of Municipal water Demand for Tampa Bay Water for the month of November. 

Forecasts using Actual Weather are a “Perfect” forecast and shows the error in the model itself.  

 

TBW

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

210

240

270

300

Year

D
e
m

a
n
d

Scenario

ActualDemand

ActualWeather

Climatology

The Nov Projections.



 13 

 

 
Figure 13: Mean Absolute Percent Error (MAPE) for the Tampa Bay Water Rainfall-Streamflow Model 

using observations (perfect forecast), climatology, CLIFF, and NOAA CPC Outlooks for the Alafia (top) and 

Hillsborough (lower) Rivers. Lower MAPE indicates a better forecasts. Forecasts using CLIFF outperform 

NOAA CPC Outlooks and Climatology (with the exception of November for the Alafia River).  

 

Figure 14 shows the comparisons of streamflow for the PRA watershed. 

 
 

Figure 14: Boxplots for the ensemble forecasts compared to observations for Peace River streamflow. 
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Machine Learning-Based streamflow model 

In addition to the streamflow model used by TBW, we explored ML-based approach for seasonal 

streamflow forecast. However, much ML literature focuses on point forecasts rather than the 

complete predictive distribution. Here, we developed a methodology for probabilistic forecasting 

of seasonal streamflow using a suite of ML models. These predictive distributions can be 

integrated into probability-of-exceedance (POE) analyses and decision-making tools such as 

those being used by TBW. 

 

We evaluated multiple ML models that use lagged observations to generate probabilistic 

forecasts and POE curves for the JFM (January-February-March) seasonal streamflow. Given the 

significant influence of the El Niño-Southern Oscillation (ENSO) in this season, our evaluation 

focused on climate-driven streamflow forecasts. Forecasts derived from the predictive 

distributions were evaluated with multiple predictive performance metrics, including the RMSE 

for point-level prediction, the NOIS for interval prediction, and CRPS/LEPS for the whole 

predictive distribution and the POE forecast. 

 

We focused on ML methods that provide conditional distribution estimates of unobserved 

streamflow based on training data and tuned model parameters, enabling the derivation of POE 

forecasts from predictive distributions. The models based on multiple predictors used the 

streamflow and Niño indices of the preceding seasons (Oct.—Dec., Jul.—Sep., and Apr.--Jun in 

the previous year). We listed the models applied in this study and their key descriptions in Table 

3.  

Table 3 The abbreviation and the key description for the 10 models in the study 

Abbreviation Description 

Climatology ECDF based on historical records of JFM streamflow 

SF_1 Simple linear regression with lag 1 streamflow 

Nino_1 Simple linear regression with lag 1 Nino 3.4 index 

MLR Multiple linear regression with all the 15 predictors 

VIF pre-screen covariates using variance inflation factor (VIF) 

threshold of 10 to suppress multicollinearity  

Forward Forward stepwise selection with tuning number of covariates  

ElasticNet Penalized regression with a mixture of Lasso (L1) and Ridge 

(L2) penalties on coefficients 

GAM Generalized additive model (GAM) consist of a linear 

combination of nonlinear smooth functions with smooth terms 

selection 

QRF Quantile regression forest (QRF) estimate quantiles using 

random forest, which is composed of de-correlated decision trees 

GBM Quantile regression forest with Gradient boosting machine 

(GBM), whose decision trees consider the error from subsequent 

trees 

 

After evaluating the streamflow forecasts over 46 years, we categorized the models into three 

groups based on their performance. The first category, consisting of Forward, GAM, ElasticNet, 

MLR, and VIF, outperformed the second category (GBM, QRF, and SF_1), while both surpassed 

the third category (Nino_1 and Climatology) across various evaluation metrics, including RMSE, 
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NOIS, CRPS, and LEPS. Notably, the models in the first category share a common feature of 

additive function comprising multiple predictors. Among them, Forward, ElasticNet, and GAM 

consistently achieved superior scores in mean CRPS and mean LEPS in pairwise t-tests. 

Particularly, Forward consistently achieved the highest scores across various performance 

metrics, making it the preferred choice for seasonal streamflow volume forecasting in the area. 

 

Furthermore, the model that incorporated lagged streamflow and all four Niño indices 

demonstrated superior performance compared to SF_1 and Nino_1, which either do not utilize 

any Niño index or rely on a single Niño index. This finding underscores the importance of 

incorporating lagged streamflow and multiple Niño indices in streamflow forecasting. Suggested 

by feature selection methods (employed in Forward, ElasticNet, and GAM), streamflow and the 

Niño1.2 from October-December were the most important predictors, and QRF identified 

streamflow and the four Niño indices from October-December as the most important predictors. 

Additionally, QRF revealed that among the variables spanning April to September, all the lagged 

Niño indices exhibited greater importance than lagged streamflow, highlighting the lagged 

influence of ENSO. 

 

In conclusion, this study demonstrates the potential of machine learning algorithms for seasonal 

streamflow volume forecasting in West-Central Florida rivers. The comparison of different ML 

methods revealed that incorporating multiple Niño indices along with lagged streamflow 

significantly improves probabilistic forecasts. This work demonstrated the usefulness of machine 

learning-based streamflow forecasts for water management by providing the forecasted 

Probability of Exceedance (POE) curves that facilitate decision-making in water management. 

 

Analyzing the decision-making process and implementation of forecasts by TBW & PRA: 

 

To understand the scientist-stakeholder interactions and its impact on adoption and decision 

making, we developed a contextual model (Figure 15) of a decision-making process and utilized 

the FloridaWCA, TBW, and PRA as a collaboratory for the development, implementation, and 

refinement of seasonal forecasts that can be used to help utilities make decisions about water 

resource allocations. We explored how interacting with scientists and modelers as project develops 

affect adoption and sustainability, the process do utility decision makers use in deciding how they 

will use climate data in their operations (benefits/risks),  and whether the process was affected by 

utility characteristics, and the prospect of other utility members of FloridaWCA l to adopt/adapt? 
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Figure 15: Decision as problem solving – Consumer problem solving 

 

Several FloridaWCA capacity building and stakeholder engagement workshops were conducted, 

as shown in Table 4. All the presentation recordings are available at  www.FloridaWCA.org.  

In-person meetings canceled due to COVID-19 and moved to online webinars 

 
Table 4: FloridaWCA webinars for capacity building and stakeholder engagement 

 Theme # participants 

February 2020 In-person quarterly meeting 37 

July 2020 Water, climate and COVID-19 115 

September 2020 
Water utility risk and resilience to 

climate change impacts 
105 

November 2020 
Water quality and climate change 

issues 
108 

April 2021 
Hurricane season impacts on water 

management in Florida 
123 

September 2021 
Climate change impacts on wastewater 

and stormwater management 
173 

January 2022 Perspectives on saltwater intrusion 191 

April 2022 
Integrating seasonal forecasts into 

utility operations 
95 

October 2022 
Impacts of extreme weather and 

climate on florida water agencies 
142 

March 2023 

Future rainfall projections for florida 

water resources planning and 

management: Stakeholder needs 

assessment 

195 

 

In addition, interviews interviews were conducted with the stakeholders at TBW and PRA were 

conducted. The stakeholders included board members of FloridaWCA and other members of the 

FloridaWCA. The results of these stakeholder interviews (see Figure 16) were shared with all the 

members of the FloridaWCA. 

 

 
Figure 16: Stakeholder responses to integrating new information into existing operations 

 

http://www.floridawca.org/
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The interviews showed that stakeholders appreciate and utilize a wide range of climate 

information/data from a multiplicity of sources with varying levels of integration into existing 

analytical tools and decision processes.  However, certain barriers were identified to utilizing 

climate projections for decision-making. They ranged from the complexity and trustworthiness 

of the data; lack of standardized procedures; educational gaps among constituents to insufficient 

funding. Also, the panelists reported a noted mismatch between “data that is needed and what is 

available.” Given the unique state topography, the need for varied levels of downscaling of 

gridded data is an ongoing issue. Since decision data come from multiple sources, there is an 

additional need for guidance on integrating these sources to understand a given local situation 

best.  All this underscores a unique characteristic of the water resource field – the need for highly 

specialized and often location-specific data, further complicating the decision-making process.  

 

Participants and panelists agreed on the importance of developing comprehensive regulatory 

standards, accessible tools, better education, and more secure funding to better incorporate 

climate projections in decision-making. This includes advocating for a holistic approach that 

combines data from various sources and fosters collaboration across different organizations. 

 

Figure 17 shows the conceptual model rainfall pattern impacts on resilience planning across 

various sectors. This model illustrates the intricate relationships and interdependencies between 

the sectors, based upon the data provided by the experts. It also sheds light on decision-making 

processes concerning resilience planning.  

 
Figure 17: Conceptual model representing the impact of changing rainfall patterns on resilience planning 

across various sectors.  
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Figure 18 shows some key examples of stakeholder responses. 

 
 

 

 
 

 
Figure 18: Examples of responses from stakeholders 
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Key findings include the risk-averse nature of water resource decision-making, the complexity of 

data used, and the necessity for a holistic approach. These findings reveal how difficult it may be 

for the water management sector to embrace new methods due to the potential consequences of 

inaccurate projections, i.e., risk aversion on the part of constituents and board members, the 

struggle to effectively employ extensive datasets, and the need for interorganizational 

collaboration to overcome these difficulties.   

 

Recommendations emphasize the need for a better understanding of the risk analysis 

calculations of water resource managers, a deeper exploration into how practitioners use, 

combine, and tailor data, and the establishment of partnerships between practitioners and 

scientists to foster greater collaboration. Implementing these recommendations will enhance 

decision-making processes and enable better adaptation and mitigation strategies in the face of 

climate change.   

 

• Future research must assess water resource managers' knowledge level and awareness. 

The existing literature lacks a comprehensive understanding of the data and support tools 

managers perceive to be available for making climate projections. Identifying these gaps 

in access will help determine how to effectively disseminate data and tools that managers 

are unaware of. Despite its highly risk-averse nature, the literature has not adequately 

explored risk aversion in water resource management. Conducting further research to 

examine different types of risks and how managers calculate risk costs when making 

decisions is essential.  

 

• To further enhance water-resource decision-making, it is crucial to gain a deeper 

understanding of how practitioners and scientists currently utilize, combine, and tailor the 

available data. This examination will offer valuable insights into presenting data in a 

manner most useful to practitioners and identifying decision-support tools that would 

enhance the integration of high-resolution climate forecasts within their organizations.  

Climate Projections & Water Resources: Addressing Barriers & Advancing Solutions for 

Effective Decision-Making   

 

• Additionally, further research should aim to understand how to advance effective 

decision-making under uncertainty. Navigating ranges of projections that incorporate 

uncertainty and account for future evolving conditions is vital in considering multiple 

scenarios. Even sensitive analysis of possible futures can lead to better decision-making 

compared to not adopting any projections at all. Therefore, it is essential for academics to 

understand and promote these complex decision-making skills. 

 

• Moreover, academics should delve into knowledge management and knowledge 

translation within this field. While the necessary knowledge and data exist, the challenge 

lies in effectively integrating and utilizing them. Exploring the most effective ways to 

share and co-produce knowledge in this sector will be instrumental in bridging this gap 

and fostering better-informed water-resource decisions in the face of climate change. 
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• Finally, stakeholders in the water-resource sector should strongly consider establishing 

partnerships between practitioners and scientists. Such collaborations would foster 

greater collaboration and enhance the overall field. By breaking down knowledge silos 

and addressing the issue of service replication, these partnerships would lead to more 

efficient and effective decision-making processes. 

 

Overall, implementing these recommendations will contribute to advancing our understanding of 

water-resource decision-making and enable better adaptation and mitigation strategies in the face 

of climate change.   

 
Project Results and Outcomes  

 

A high-resolution retrospective seasonal forecast dataset from 2000-2022 has been created for 

the state of Florida for this project. Evaluations of the forecasts have shown improvement in skill 

comparable to the CPC. Forecasts have been integrated into stakeholder models and were found 

to provide improved forecasts compared to climate prediction center outlooks. These forecasts 

using stakeholder models have been published in peer-reviewed journals. Machine learning 

models have been evaluated and found to provide better forecasts than simpler models. 

 

As the forecasts, integrated into stakeholder models, have been shown to provide improved skill 

compared to previously available forecasts, our stakeholders will be better able to rotate between 

water sources (e.g. one utility uses groundwater, surface water, and desalinated water and another 

uses surface water and aquifer storage and recovery) in anticipation of forecasted drought 

conditions as well as forecasted wetter than normal conditions. 

 

This proposed work is innovative in that:  

1) It has been designed and proposed by an established stakeholder-scientist partnership,  

2) For the first time, a regional climate model at 10km spatial resolution has been deployed 

for Florida to conduct real-time seasonal forecasts for the winter season. The results of 

this exercise clearly show the benefits of high resolution in terms of the fidelity of the 

seasonal forecasts of precipitation that does not necessarily always follow the canonical 

El Niño and the Southern Oscillation teleconnections. This is largely from the fact that 

chaotic variations (or noise) is much higher as the granularity of the forecast is reduced, 

which our modeling system at 10km was able to simulate. 

3) It provides forecasts at a desired frequency, lead time, and resolution of derived variables 

that are relevant to hydrologic applications but are not currently available from 

operational centers,  

4) The real-time monitoring of the evolution of the wet season was notable for its reliability 

of the seasonal outlook. When most numerical climate models display poor seasonal 

prediction skill in the wet season owing to the overwhelming contribution of small-scale 

thunderstorms to the seasonal rainfall, the approach of real-time monitoring of the onset 

of the wet season to provide outlook of the forthcoming season is a good alternative.  

5) The real-time monitoring of the evolution of the wet season used the IMERG -12h 

latency product of NASA and demonstrated its efficacy in providing credible seasonal 

outlook of the rainy season at the granularity of the water management districts of 

Florida. 
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