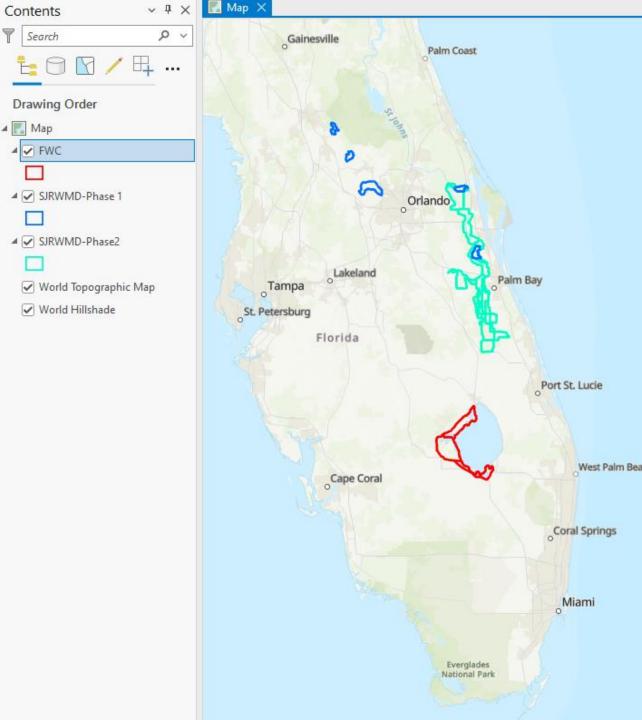
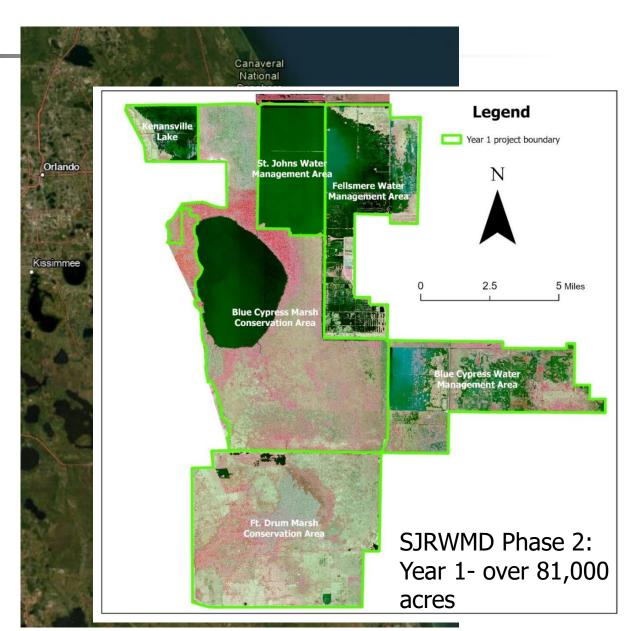

Wetland Mapping in Central Florida

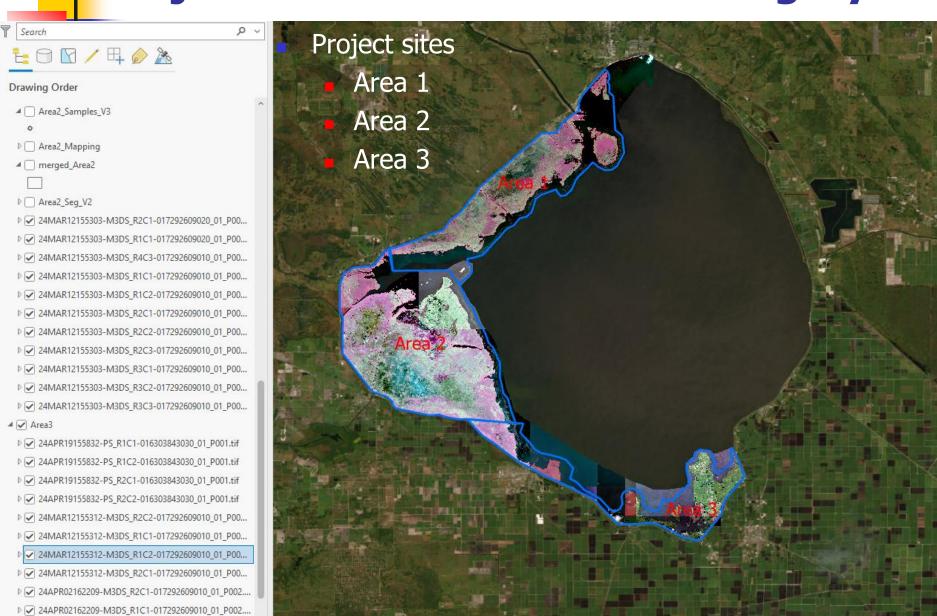
- ¹ Caiyun Zhang, PhD, Professor
- ² Project Manager: Dianne Hall, PhD
- ³ Project Manager: Alyssa Jordan
 - 1. Department of Geosciences, Florida Atlantic University (FAU)
 - 2. St. Johns River Water Management District (SJRWMD)
 - 3. Florida Fish and Wildlife Conservation Commission (FWC)



Project Background

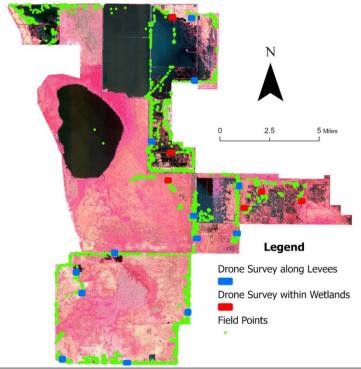
- Historical maps and datasets were produced from manual interpretation of aerial photography
- SJRWMD and FWC want to develop automated methods to map wetland plant communities using modern machine learning satellite image classification techniques
- SJRWMD Contract with FAU
 - Phase 1 (2020-2022): mapped over 50,000 acres
 - Phase 2 (2022-2025): mapping over 300,000 acres
- FWC Contract with FAU
 - 2023-2026: mapping 130,000 acres over Lake Okeechobee wetlands for years 2023, 2024, 2025

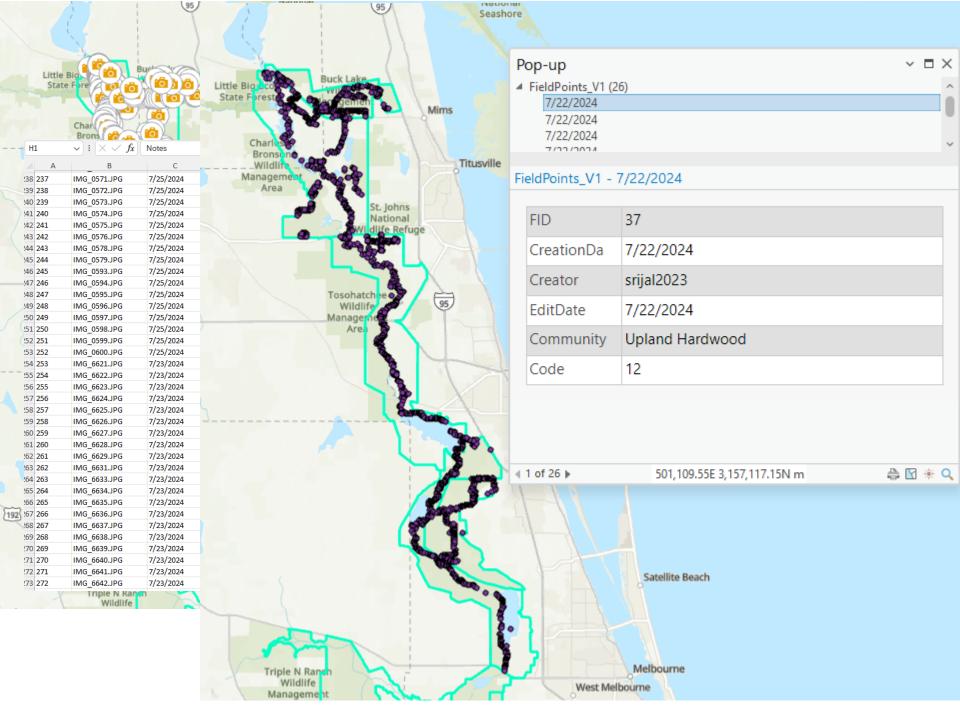

- SJRWMD
 - Phase 1 (blue): 50,000 acres
 - Phase 2 (green): 130,000 acres
- FWC (red): 130,000 acres

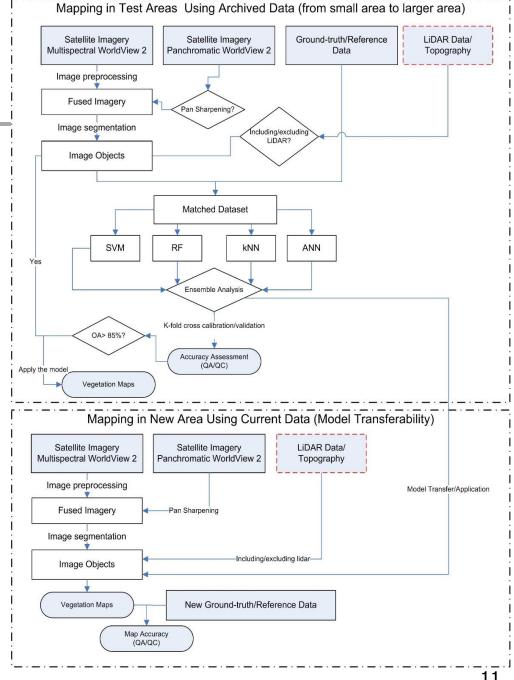

Project data: SJRWMD-Satellite imagery

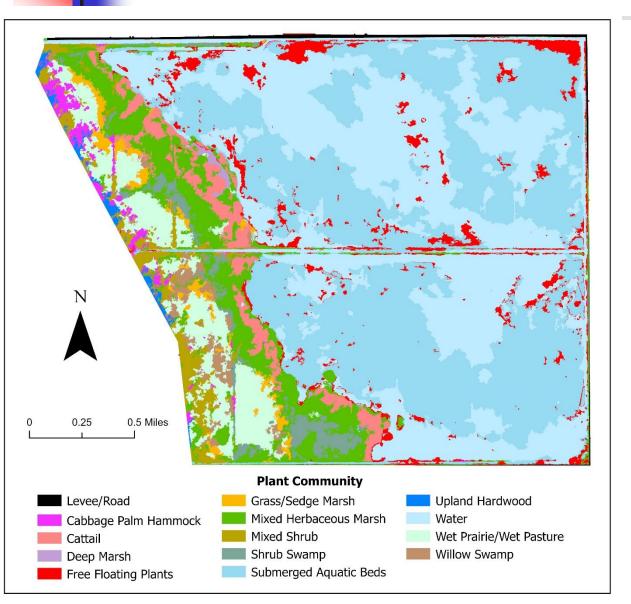

Datasets

- WorldView-2 satellite products, lidar DEMs
- Historical maps, aerial imagery
- Newly collected field point samples, imagerybased interpretated references
- WorldView 2/3 pansharpened imagery product
 - 8 bands covering visible and infrared
 - 0.5 m by fusing multispectral sensor and panchromatic imagery products

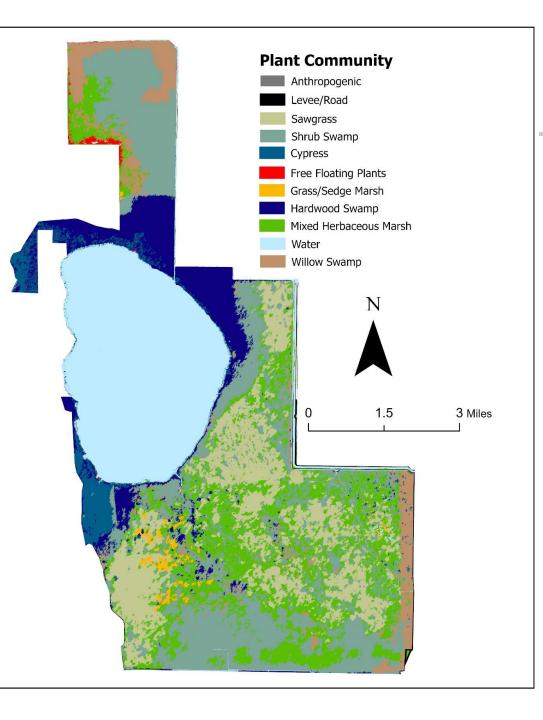

Project data: FWC-Satellite imagery





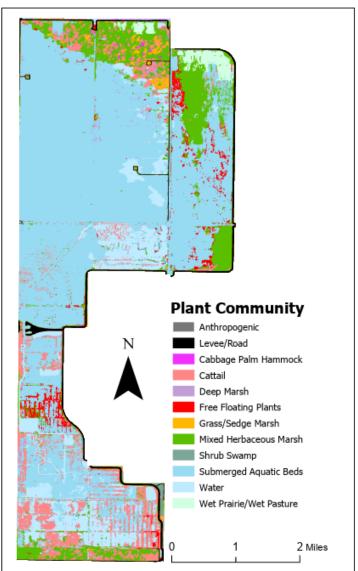


Methodology

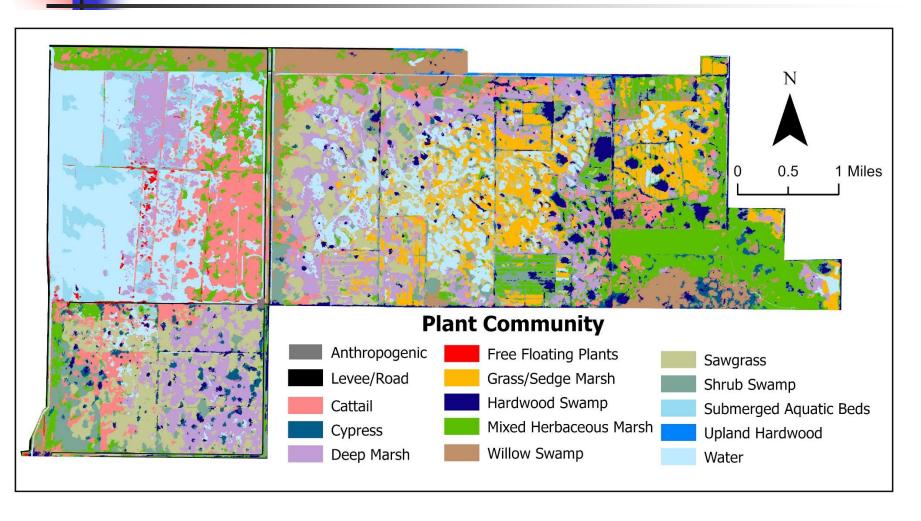

- Image segmentation
- Fusing LiDAR with imagery
- Training sample selection
- Machine learning training and classification: SVM, RF, and ANN
- Ensemble analysis
- Map refinement
- Accuracy assessment
- Software: ArcGIS Pro, eCognition, R script

Results: KENAN


Overall accuracy: 0.88

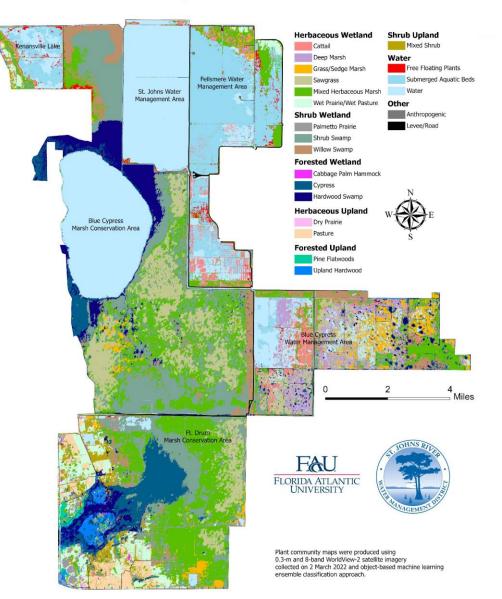


Results: BCMCA


Overall Accuracy: 0.89

Results: SJWMA and FWMA

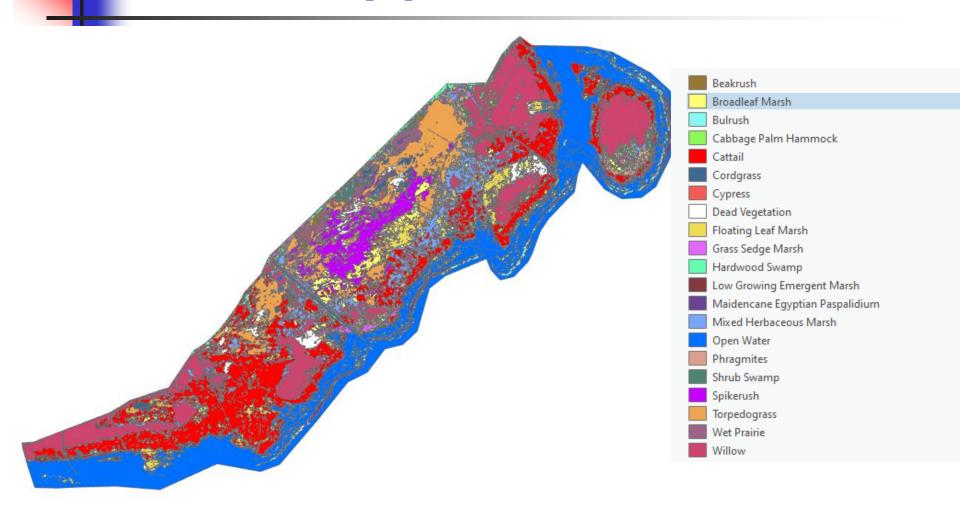
Results: BCWMA



Overall Accuracy: 0.84

2022 Plant Communities Upper St. Johns River Basin Florida Turnpike to Fellsmere Grade

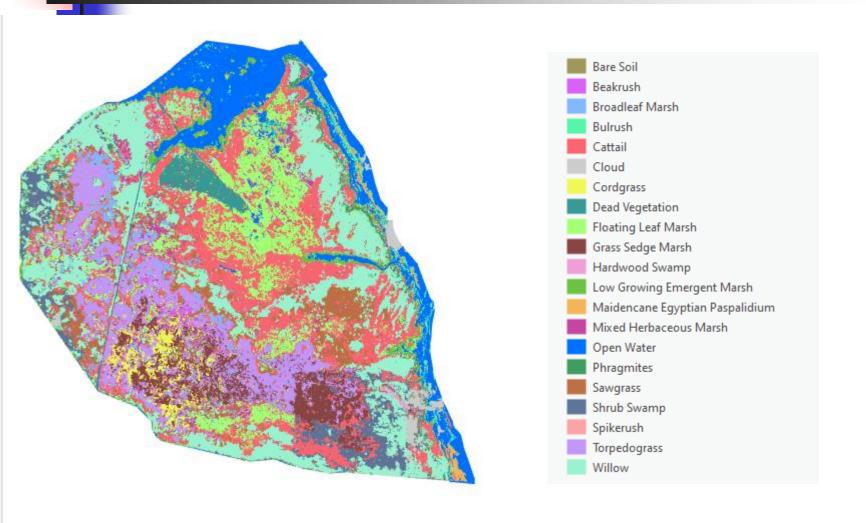
Combined map product for Year 2022



FWC-Lake Okeechobee, 2023

 Successfully imagery products were acquired for May 18, 23 with less cloud contamination

Area 1: map product

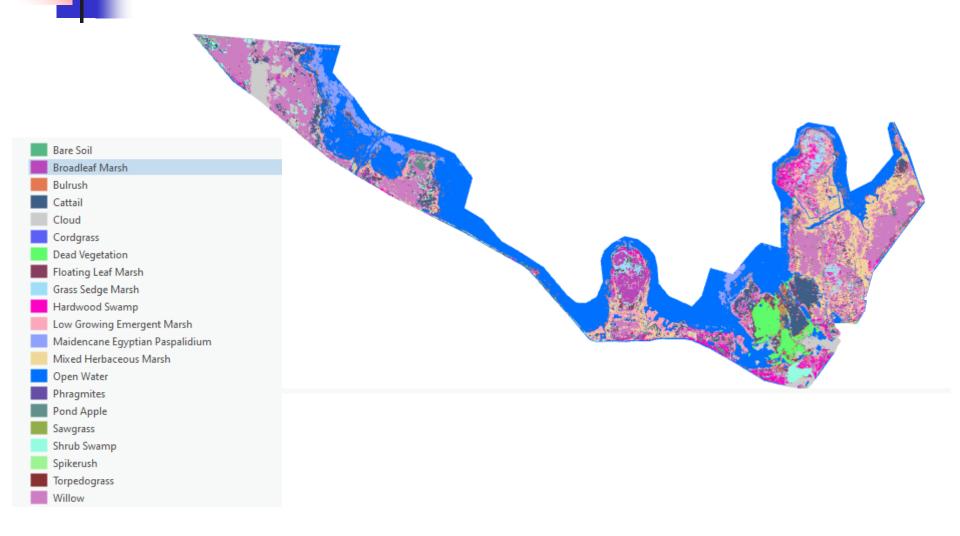


Results: classification accuracies

Area 1: Overall accuracy: 90%

A	В	c	D	E		F	G	н		1. 1	К	477		М	N	0	Р	P Q		R S		т	U	V	W	х	γ
1			CA	FL	GS				PH	TG	ME	SR	BR			WP	SS	WI	CP		HS			-	Column TcU		
2 BL	69	1		2	0	0	0		_		0	0	1	0	0		0	0	0	0	0	0				0.885	-
3 BU	0	83	,[0	0	0	0	0) 0	ð	0	1	0	0	0	/	0	0	0	0	0	0	0	0		0.988	
4 CA	2			JO	1	0	0	0	,	3	0	0	0	0	1		0	1	1	0	0	0	0	1		0.958	
5 FL	1	0	4	0 2	219	0	2	2 0	1	o (0	0	0	0	0	1	0	0	0	0	0	0	0	2		0.978	
6 GS	0	1	.[6	0	56	0	0		1	2	0	0	0	0	/	0	1	0	0	0	0	0	0	67	0.836	
7 LG	0	0	4	0	0	0	107	7 0	0	3	0	0	0	0	0	/	0	0	1	0	0	0	0	0	108	0.991	
8 HM	4	0	17	ر 7	2	1	0	30	1	1	1	0	6	0	0	4	0	2	0	1	0	2	0	0	67	0.448	
9 PH	1	0	4	8	1	1	0	0	51	1	0	0	0	0	0	4	0	1	0	0	0	0	1	1	65	0.785	
10 TG	0	0	4	0	0	0	0	0	0	0 269	.9	0	7	0	2		1	0	0	0	0	0	0	3	282	0.954	
11 ME	0	1	4	0	0	0	0	0	0	3 /	0	69	0	0	0	4	0	0	0	0	0	0	0	0	70	0.986	
12 SR	2	0	4	0	0	0	0	0	0	0 1	.1	0	152	0	0	A CONTRACTOR	2	0	0	0	0	0	0	0	167	0.91	
13 BR	0	0	/	0	0	0	0	0	0	3 (0	0	4	12	0	4	3	0	0	0	0	0	0	1	20	0.6	
14 CG	0	0		3	0	0	0	0	0) '	5	0	2	0	24	4	6	0	0	0	0	0	0	0	40	0.6	
15 WP	1	0	/	0	0	0	0	0	0)	5	0	9	2	2	. ?	36	1	0	0	0	0	0	0	56	0.643	
16 SS	0	0	,	5	1	0	0	3	3 2	2	2	0	0	1	0		0	34	0	2	0	1	0	0	51	0.667	
17 WI	0	0		0	0	0	1	1 1	L 0) /	0	0	0	0	0		0	0	282	0	0	4	0	0	288	0.979	
18 CP	0	0		1	0	0	0	0	0) /	0	0	0	0	0		0	2	1	21	0	8	0	0	33	0.636	
19 CY	0	0	/	4	0	0	0	0	2	2 /	4	0	0	0	0		1	0	0	0	3	0	0	0	14	0.214	
20 HS	0	0		0	0	0	0	2) /	0	0	0	0	0	<u>. </u>	0	1	4	6	0	57	0	1	71	0.803	
21 OW	0	0		0	0	0	1	L 0	0) /	0	0	0	0	0		0	0	1	0	0	0	136	0	138	0.986	
22 DV	0	0	,	0	1	0	0	0	0) /	4	0	0	0	0		0	0	0	0	0	0	0	83	88	0.943	
23 Row Total	80				225	58	111						181	15	29		49		290	30	3	72					
24 PA	0.863	0.933	0.867	ı7 0.º	0.973	0.966	0.964	0.769	0.85	5 0.888	8 0.	.986	0.84	0.8	0.828	0.735	5 0	0.791 0.	0.972	0.7	1	0.792	0.993	0.883			
25 Overall Accuracy																											لـــــــا
26 Kappa	0.892																										
27																											

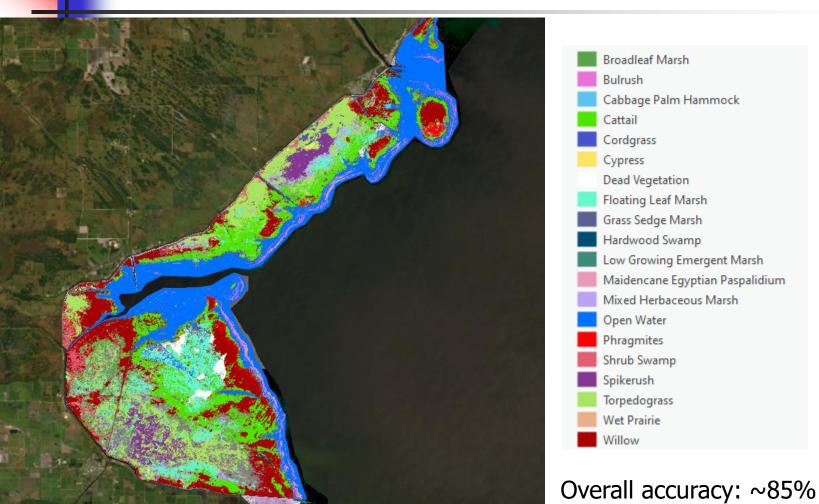
Area 2: map products



Areas 2, 3

Overall accuracy: 82%

/ A	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	T	U	V	W	Х	
1	BL BI	U (CA	FL	GS	LG	HM	PH	TG	SG	ME	SR B	R	CG	SS	WI	HS	PA	OW	DV	BS	Column Tol	Jser's Accuracy	
2 BL	140	0	11	8	1	0	16	0	19	7	0	0	0	2	0	6	3	()	0	0 1	214	0.654	
3 BU	0	160	5	3	0	2	9	2	0	0	17	0	0	0	1	. 0	1	. ()	2	1 1	204	0.784	
4 CA	7	10	709	0	2	1	17	14	6	17	11	0	0	0	3	16	1	. ()	0	2 0	816	0.869	
5 FL	0	5	8	739	0	35	14	3	0	1	0	0	0	0	5	6	3	()	0	2 0	821	0.9	
6 GS	1	1	2	3	152	6	5	2	29	0	0	0	6	16	0	4	0	:	l	0	0 0	228	0.667	
7 LG	1	2	2	37	0	461	21	6	0	0	0	0	0	0	7	11	3	()	0	0 0	551	0.837	
8 HM	9	1	23	11	2	23	234	7	2	13	4	0	0	0	7	15	2	. ()	0	0 1	354	0.661	
9 PH	0	1	53	2	0	3	6	152	3	0	1	0	0	0	0	3	1	. ()	0	1 0	226	0.673	
10 TG	9	0	7	0	9	0	3	2	405	0	1	0	5	5	0	0	0	()	0	0 0	446	0.908	
11 SG	12	0	22	4	0	0	10	1	1	64	0	0	0	0	0	4	0	()	0	0 0	118	0.542	
12 ME	0	11	8	0	0	0	0	2	0	0	234	0	0	0	0	1	0	()	5	0 0	261	0.897	
13 SR	1	2	2	0	0	0	0	0	7	0	0	0	0	0	0	0	0	()	0	0 0	12	0	
14 BR	0	0	0	0	6	0	0	0	2	0	2	0	39	2	0	0	0	()	0	0 0	51	0.765	
15 CG	3	0	1	0	17	0	0	0	11	0	0	0	0	44	0	0	0	()	0	0 0	76	0.579	
16 SS	0	0	3	5	1	9	4	4	0	0	0	0	0	0	135	37	16	()	0	0 0	214	0.631	
17 WI	2	3	2	8	0	11	18	0	0	0	1	0	0	0	10	564	6	()	0	0 0	625	0.902	
18 HS	0	0	3	2	0	5	2	1	0	0	0	0	0	0	11	. 5	82		7	0	0 0	118	0.695	
19 PA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	43	3	0	0 0	55	0.782	
20 OW	0	3	2	0	0	1	0	0	0	0	4	0	0	0	0	0	0	(25	3	0 0	263	0.962	
21 DV	0	1	3	4	0	0	2	0	1	0	3	0	0	0	0	2	0	()	0 13	В 0	154	0.896	
22 BS	0	0	1	0	0	2	0	0	0	0	0	0	0	0	0	0	0	()	0	0 50	53	0.943	
23 Row Total	185	200	867	826	190	559	361	196	486	102	278	0	50	69	179	674	130	5:	1 26	0 14	4 53	5860	0	
24 Producer's	0.757	8.0	0.818	0.895	0.8	0.825	0.648	0.776	0.833	0.627	0.842	0	0.78	0.638	0.754	0.837	0.631	0.843	0.97	3 0.95	0.943	0	0	
25 Overall Ac	0.819	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	()	0	0 0	0	0	
26 Kappa	0.802	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	()	0	0 0	0	0	
27																								
28																								


Area 3: map products

Lake Okeechobee area-2023

Lake Okeechobee area-2024

Challenges and Solutions

- Segmentation
 - Scale selection, too small leads to over-segmentation, too big leads to under-segmentation
 - Solution: split the big project area into smaller areas and set site-specific scale
 - Time consuming segmentation process
 - Solution: batch and tile processing in eCognition
- Post-classification map refinement: shadows, confusion of shrub swamp with willow swamp, hardwood swamp with upland hardwood, etc., manual refinement is time-consuming
 - Solution: collecting adequate training samples for major communities, and manually classify small communities such as upland hardwood

- The designed object-based machine learning ensemble mapping procedure using high resolution satellite imagery products is successful to effectively catch wetland community patterns
- Efficiency and time saving:
 - For mapping Lake Okeechobee (130,000 acres): 2-3
 weeks if field reference samples are ready

Acknowledgement

District personnel: Dianne Hall, Kim Ponzio, Christy Akers, Jodi Slater, Jonny Baker, Doug Voltolina, Chris O'Hara, and Ken Snyder

FWC: Alyssa Jordan

Graduate students: David Brodylo, Mizanur Rahman, Sandip Rijal, Abdullah Ai-Fazari, Fiona Benzi, Rabindra Parajuli, David Ramirez, and Madan Thapa

Chhetri

